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Using mathematical-simulation methods, we have investigated the special features of the process of formation
of the temperature field in a half-space with a boundary moving following the prescribed law in the case of
realization of unstable operating conditions of heat exchange with the environment which lead to the time de-
pendence of the heat-transfer coefficient.

Solution of many practically important problems is associated with the need for mathematical simulation of
the processes of heat transfer in solids when the conditions of unsteady heat exchange with the environment, resulting
in the time change of the heat-transfer coefficient, are realized [1–5]. The difficulties arising in solving such problems
are well known [2] and they become even more aggravated in the cases where account must be taken of the influence
of different mechanical and physical-chemical processes on the temperature field of a thermally loaded region. The oc-
currence of these processes inevitably leads to a change in the dimensions of a solid because of the time change in
position of its boundaries.

Among the problems of nonstationary heat conduction in regions with moving boundaries, of special interest
are problems associated with investigation of the temperature fields in regions with boundaries moving following a
prescribed law [3, 4].

The main aim of the investigations performed is to study the features of the process of formation of the tem-
perature field of a solid simulated by a half-space with a boundary moving following the known law l = l(Fo) under
unstable conditions of heat exchange with the environment.

The object of the investigations was the one-dimensional mathematical model of the process under study:

∂θ (ξ, Fo)

∂ Fo
 = 

∂2θ (ξ, Fo)

∂ξ2  ;   ξ > l (Fo) ,   Fo > 0 ,   θ (ξ, 0) = 0 ,

∂θ (ξ, Fo)
∂ξ



 ξ=l (Fo)+0

 = Bi (Fo) [θ (l (Fo) + 0, Fo) − 1] ,

(1)

where θ(ξ, Fo) 2 L2[l(Fo); +∞), i.e., at each fixed Fo ≥ 0 the function θ(ξ, Fo) is quadratically integrable with respect
to the spatial variable ξ 2 [l(Fo); +∞), l = l(Fo) ≥ 0 is the known law of motion of the boundary,

ξ = 
x

x∗

 ,   Fo = 
κt
_

x∗
2
 ,   θ = 

T − T0

Tenv − T0

 ,   Bi = 
α

λ
 x∗  . (2)

The main aim of the present investigations can be achieved by assuming that l = l(Fo) is a nondecreasing,
nonnegative function differentiable at least in a generalized sense, l(0) = 0, while the function Bi = Bi(Fo) defined in
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Eq. (2) and characterizing the instability of the realized conditions of heat exchange with the environment satisfies the
standard requirements of the theorem of existence and uniqueness of the solution of the considered problem [6]. In this
case, it is allowable to use a moving coordinate system

X = ξ − l (Fo) ,   t = Fo , (3)

in which the mathematical model (1) can be represented in the following form:

∂θ (X, t)

∂t
 = 

∂2θ (X, t)

∂X
2

 + l′ (t) 
∂θ (X, t)

∂X
 ;   X > 0 ,   t > 0 , (4)

θ (X, t) t=0 = 0 , (5)

∂θ (X, t)
∂X



 X=0

 = Bi (t) [θ (X, t) X=0 − 1] , (6)

θ (X, t) t ≥ 0 2 L
2
 [0; + ∞) . (7)

We suppose next that

QC (p, t) = ΦC [θ (X, t)] B ∫ 
0

∞

θ (X, t) cos (pX) dX ,

QS (p, t) = ΦS [θ (X, t)] B ∫ 

0

∞

θ (X, t) sin (pX) dX

(8)

are the representations of the cosine and sine Fourier transforms [7] over the spatial variable X with parameter p. Hav-
ing successively applied the operators ΦC and ΦS to Eq. (4) and to initial condition (5), with account for Eq. (7) and
boundary condition (6) we come to the following Cauchy problem:

dQ (p, t)
dt

 = A (p, t) Q (p, t) + f (t) + F (p, t) θ (0, t) ,   t > 0 ;   Q (p, 0) = θ2 , (9)

where

Q (p, t) = 




QC (p, t)
QS (p, t)




 ,   A (p, t) = 





− p
2

− pl′ (t)
     

pl′ (t)

− p
2




 ,

f (t) = 




Bi (t)
0




 ,   F (p, t) = 





− Bi (t) − l′ (t)

p




 ,   θ2 = 


0
0




 .

(10)

According to Eqs. (9) and (10), the representations QC(p, t) and QS(p, t) of the unknown temperature field θ(X, t) are
completely determined by its values θ(0, t) on the boundary of the half-space X ≥ 0, the velocity l′(t) of motion of the
boundary, and the function Bi(t).

If R(t, τ) is the resolvent of the Cauchy problem (9) and (10), its solution can be represented in standard form
[8]:
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Q (p, t) = ∫ 
0

t

R (t, τ) 


f (τ) + F (p, τ) θ (0, τ)



 dτ . (11)

Since, in conformity with Eq. (10), the matrix functions A(p, t) and 

 ∫ 

τ

t

A (p, s) ds = 




− p
2
 (t − τ)

− p 


l (t) − l (τ)




     
p 



l (t) − l (τ)




− p
2
 (t − τ)




 ,   0 ≤ τ ≤ t

are commutative relative to the operation of multiplication, which can be checked immediately, we have [8]

R (t, τ) = exp 









 ∫ 

τ

t

A (p, s) ds










 . (12)

According to the Cayley–Hamilton theorem [8], for any square matrix B of order n the characteristic polyno-
mial q(µ) is also its annihilator polynomial, i.e., if

q (µ) = det (B − µIn) B  ∑ 

k=0

n

 qk µ
k
 ,   then   q (B) =  ∑ 

k=0

n

 qkB
k
 = θn ,

where 


qk



k=0

n
 are the coefficients of the characteristic polynomial; B0 = In and θn are the unit and square zero matrices

of order n. Thus, any degree of the square matrix B of order n is representable in the form of a linear combination

of square matrices 


 B

k

 k=0

n−1
. With this result taken into account it is proved [8] that the matrix function f(B) is a lin-

ear combination of square matrices 


 B

k

 k=0

n−1
:

f (B) =  ∑ 

k=0

n−1

 αkB
k
 ,

where 


αk



 k=0

n−1
 are the unknown coefficients satisfying the system of linear algebraic equations

Σ  αk µj
k
 = f (µj) ,   j = 1, ..., n ,

provided that the eigenvalues 


µk



 k=0

n
 of the matrix B are different.

In the case under consideration, n = 2 and the matrix exponential function on the right-hand side of equality
(12) is defined as

exp 









 ∫ 

τ

t

A (p, s) ds









 = α0I2 + α1 ∫ 

τ

t

A (p, s) ds .

The coefficients α0 and α1 are found in the following manner. Solving the characteristic equation

det 






 ∫ 

τ

t

A (p, s) ds − µI2







 = 0 ,

we calculate the eigenvalues
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µ1 = − p
2
 (t − τ) + ip 



l (t) − l (τ)



 ,   µ2 = − p

2
 (t − τ) − ip 



l (t) − l (τ)



 .

Then we write a system of linear algebraic equations relative to the coefficients α0 and α1,

α0 + α1 µ1 = exp 


µ1




 ,  α0 + α1 µ2 = exp 



µ2





and obtain

α0 = α1p
2
 (t − τ) + exp 



 − p

2
 (t − τ)



  cos 



 p [l (t) − l (τ)]



  ,

α1 = 
1

p [l (t) − l (τ)]
 exp 



 − p

2
 (t − τ)



  sin 



 p [l (t) − l (τ)]



  .

Thus, with account for  Eq. (12), the resolvent of the Cauchy problem (9) and (10) is

R (t, τ) = 











cos 


 p [l (t) − l (τ)]





− sin 


 p [l (t) − l (τ)]





     

sin 


 p [l (t) − l (τ)]





cos 


 p [l (t) − l (τ)]














 exp 



 − p

2
 (t − τ)



 (13)

and, according to Eqs. (11), (13), and (10), we have

QC (p, t) = ∫ 
0

t

exp 


 − p

2
 (t − τ)



  cos 



 p [l (t) − l (τ)]



  Bi (τ) dτ + ∫ 

0

t

exp 


 − p

2
 (t − τ)







 p sin 



 p [l (t) − l (τ)]



  − [Bi (τ) + l′ (τ)] cos 



 p [l (t) − l (τ)]







  θ (0, τ) dτ . (14)

Using representation (14), the inversion formula of the cosine Fourier transform [7], and changing the order
of integration, we obtain

θ (X, t) = 
2
π

 ∫ 
0

t 








∫ 
0

∞

exp 


 − p

2
 (t − τ)



  cos 



 p [l (t) − l (τ)]



  cos (pX) dp










 Bi (τ) dτ +

+ 
2
π

 ∫ 

0

t 








∫ 

0

∞

exp 


 − p

2
 (t − τ)



  


p sin 



 p [l (t) − l (τ)]



  cos (pX) −

− (Bi (τ) + l′ (τ)) cos 


p [l (t) − l (τ)]



 cos (pX)  dp  




 θ (0, τ) dτ . (15)

Having calculated the internal improper integrals on the right-hand side of equality (15), we represent it as
follows:

 θ (X, t) = ∫ 
0

t

K (t, τ, X) θ (0, τ) dτ + ∫ 
0

t

Ψ (t, τ, X) Bi (τ) dτ ;   X ≥ 0 ,   t ≥ 0 , (16)

where
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K (t, τ, X) = 
1

2 √π (t − τ)
 




1
2 (t − τ)

 



(l (t) − l (τ) − X) exp 




− 

[l (t) − l (τ) − X]
2

4 (t − τ)




 +

+ (l (t) − l (τ) + X) exp 



− 

[l (t) − l (τ) + X]
2

4 (t − τ)








 − (Bi (τ) + l′ (τ)) ×

× 



exp 




− 

[l (t) − l (τ) − X]
2

4 (t − τ)




 + exp 




− 

[l (t) − l (τ) + X]
2

4 (t − τ)












 ; (17)

Ψ (t, τ, X) = 
1

2 √π (t − τ)
 



exp 




− 

[l (t) − l (τ) − X]
2

4 (t − τ)




 + exp 




− 

[l (t) − l (τ) + X]
2

4 (t − τ)








 . (18)

Equalities (16)–(18) determine uniquely the temperature field θ(X, t) of the half-space in the moving coordinate system
(3) with the known law θ(0, t) of variation of the temperature on the boundary of this half-space.

Using expressions (17) and (18), we set

ϕ (t) = ∫ 

0

t

Ψ (t, τ, 0) Bi (τ) dτ = ∫ 

0

t
1

√π (t − τ)
 exp 




− 

[l (t) − l (τ)]2

4 (t − τ)




 Bi (τ) dτ ,

k (t, τ) = K (t, τ, 0) = 
A (t, τ)
√ t − τ

 ,

A (t, τ) = 
1

√π
 




l (t) − l (τ)
2 (t − τ)

 − Bi (τ) − l′ (τ)



 exp 




− 

[l (t) − l (τ)]
2

4 (t − τ)




 ,   u (t) = θ (0, t) .

(19)

In this case, in accordance with Eqs. (16) and (19), the function u(t), determining the temperature of the boundary X
= 0 of the considered half-space, is the solution of the Volterra integral equation of the second kind

u (t) = ∫ 

0

t

k (t, τ) u (τ) dτ + ϕ (t) , (20)

whose kernel k(t, τ) = (t − τ)−1 ⁄ 2 A(t, τ) has a weak singularity and is not a Fredholm kernel [9]. Nonetheless, it can
be shown that, under the assumption of a piecewise continuity of the functions l′(t) and Bi(t) on the segment [0; t∗ ],
where t∗  < +∞, the solution u(t), 0 ≤ t ≤ t∗ , of the integral equation (20) exists and is unique in any of the functional
spaces C[0; t∗ ] and Lp[0; t∗ ], p > 2 [9].

For numerical solution of the integral equation (20) we choose the natural number N, set the tabulation step
su of the function u(t) equal to

su = (N + 1)−1
 t∗  ;   ti = isu ,   i = 0, ..., N , (21)

and construct an iterative process which makes it possible to calculate with a prescribed accuracy the value of u(tm+1)
from the known values of 



u(ti)



 i=1

m
of the sought solution u(t) = θ(0, t). Here t0 = 0 and u(0) = 0.

We suppose next that

ui = u (ti) ;   ϕi = ϕ (ti) ,   i = 0, ..., N . (22)

Then, according to Eqs. (19) and (20),
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um+1 =  ∫ 

0

tm+1

  
A (tm+1, τ)

√tm+1 − τ
 u (τ) dτ + ϕm+1 . (23)

The integral on the right-hand side of equality (23) is improper, thus making it impossible to use immediately
the known quadrature formulas [10, 11]. To overcome this difficulty, we set

Jm+1 =  ∫ 
0

tm+1

  
A (tm+1, τ)

√tm+1 − τ
 u (τ) dτ = Jm+1

(1)
 + Jm+1

(2)
 ,   Jm+1

(1)
 = ∫ 

0

tm

 
A (tm+1, τ)

√tm+1 − τ
 u (τ) dτ ,

Jm+1
(2)

 =  ∫ 

tm

tm+1

  
A (tm+1, τ)

√tm+1 − τ
 u (τ) dτ , (24)

where the integral Jm+1
(1)  is proper and its value can be calculated by using the known quadrature formula of trapezoids

[11] and equalities (21) and (22):

Jm+1
(1)

 = 
√su

2
 






2  ∑ 

i=1

m−2

 
A (tm+1, ti)

√ m − i + 1
 ui + A (tm+1, tm) um







 . (25)

Replacing the integration variable by τ = tm+1 − y2, we reduce the improper integral Jm+1
(2)  determined in Eq. (24) to the

integral of the function having a removable discontinuity. Therefore, with account for Eqs. (21) and (22), we have

Jm+1
(2)

 = 2  ∫ 

0

√su

 A (tm+1, tm+1 − y
2) u (tm+1 − y

2) dy = √su  [A (tm+1, tm+1) um+1 + A (tm+1, tm) um] , (26)

where, according to Eq. (19),

A (t, t) =  lim
τ→t−0

   A (t, τ) = − 
1

2 √π
 [l′ (t − 0) + 2 Bi (t − 0)] . (27)

Having substituted the right-hand sides of equalities (24)–(27) in Eq. (23) and having expressed um+1 from the
relation obtained, we come to the following computational scheme for solution of the integral equation (20):

u0 = 0 ,   u1 = 
ϕ1

1 − √su  A (t1, t1)
 ,

um+1 = 
ϕm+1

1 − √su  A (tm+1, tm+1)
 + 

√su

1 − √su  A (tm+1, tm+1)
 ×

× 











3

2
 A (tm+1, tm) um +  ∑ 

i=1

m−1

 
A (tm+1, ti)

√ m − i + 1
 ui










 ,   m = 1, ..., N .

(28)

It should be noted here that equalities (28) have meaning only on satisfaction of the condition

su < 
1

max
0≤t≤t∗

  [A (t, t)]2 = 
4π

max
0≤t≤t∗

  [l′ (t − 0) + 2 Bi (t − 0)]2
 . (29)
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The quantity on the right-hand side of Eq. (29) depends only on the characteristics determining the rate of the
process studied and can be considered as an analog of the Courant parameter [12].

Let us consider some results of investigations reflecting the most characteristic features of the process of for-
mation of the temperature profile θ(0, t) on the half-space boundary moving following the prescribed law under the
unstable operating conditions of heat exchange with the environment.

Figures 1 and 2 give the time dependences of the temperature θ(0, t) of the half-space boundary X = 0 under
the conditions of heat exchange with the environment by the Newton law (Bi(t) B Bi = 1):

under the pulsed conditions determined by the functional relationship

Bi (t) =  ∑ 

k=0

2

 βk 

 J (t − t

(k)) − J (t − t
(k+1))  , (30)

where 


Bk



 k=0

2
 and 



 t

(k)

 k=0

2
 are the known constants and J(t) is the Heaviside function [7];

under the periodic heat exchange conditions

Bi (t) = 1 − sin (2πt) ,   t ≥ 0 ,

for different laws of motion of the boundary:
at a constant velocity

l
′(t) B 1,

for the piecewise-constant law of motion (Fig. 1)

l′ (t) =  ∑ 

k=0

2

 βk 

 J (t − t

(k)) − J (t − t
(k+1))  , (31)

Fig. 1. Temperature of the half-space boundary X = 0 with piecewise-constant
laws of variation of Bi(t) and l′(t): 1) Bi(t)  = [J(t) − J(t − 1)] + 2[J(t − 1) −
 J(t − 2)]  + 3J(t − 2) and l′(t) B 1; 2) Bi(t) B 1 and l′(t) = [J(t) − J(t − 1)]  +
2[J(t − 1) − J(t − 2)]  + 3J(t − 2);  3) Bi(t)  = l′(t) = [J(t) − J(t − 1)]  +
2[J(t − 1) − J(t − 2)] + 3J(t − 2).

Fig. 2. Temperature of the half-space boundary X = 0 under different condi-
tions of heat exchange with the environment and with different laws of vari-
ation of l′(t): 1) Bi(t) = 1 − sin (2πt), l′(t) B 1; 2) Bi(t) B 1, l′(t) = 1 − sin (2πt);
3) Bi(t) = l′(t) = 1 − sin (2πt).
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for the nonlinear law of motion (Fig. 2)

l′ (t) = 1 − sin (2πt) ,   t ≥ 0 .

Now we consider in greater detail the evolution of the temperature profile θ(0, t) under the pulsed conditions
of heat exchange (Eq. (30)) and under the conditions of heat exchange following the Newton law Bi = 1 for a con-
stant velocity of motion l′(t) = 1 of the boundary and the piecewise-constant law (31) of its motion (Fig. 1). We single
out the most characteristic features of the process under study.

1. At a constant velocity of motion l′(t) of the half-space boundary X = 0, the improvement in the conditions
of heat exchange with the environment is accompanied by an increase in the temperature of the moving boundary (Fig.
1, curve 1).

2. Under the conditions of heat exchange following the Newton law, the rise in the velocity of motion l′(t)
inevitably leads to a decrease in the temperature θ(0, t) of the moving boundary (curve 2).

3. It is possible to exert a controlled influence on the temperature field of the half-space with a boundary
moving following the prescribed law by means of the time control of the conditions of the heat exchange with the en-
vironment (curve 3).

It should be emphasized that many factors are responsible for the interest in the pulsed conditions of heat ex-
change with the piecewise-constant law Bi(t). First, along with the physical interpretation of interest, this case is im-
portant in testing the results obtained since it leads to the simplest representations of the solution of the function θ(0,
t) in problem (4)–(7). Second, in this case it is possible to obtain rather simple evaluations of the asymptotic behavior
of the function θ(0, t) for t → +∞ that determine the influence of the pulsed heat-exchange parameters on the station-
ary temperature field of the studied region. In particular, when l′(t) B 0, these evaluations show [5] that the realization
of any pulsed heat-exchange conditions with the piecewise-constant law Bi(t) does not lead to a qualitative change in
the behavior of the function θ(0, t) for t → +∞: θ(t, 0) → 1 for t → +∞.

Now we consider the manner in which the mobility of the boundary affects the stationary (for t → +∞) tem-
perature field of a region simulated by a half-space. With allowance for the above considerations we confine ourselves
to evaluation of the asymptotic behavior of the function θ(X, t) for t → +∞ under the conditions of heat exchange with
the environment, described by the Newton law, at a constant velocity of motion of the half-space boundary, i.e., we
assume that

Bi (t) B Bi = const ,   l′ (t) B V0 = const . (32)

Taking into account Eq. (32), it is more convenient to use another representation of the solution of problem
(4)–(7), which can be obtained by the method of integral Laplace transformation [7] with respect to the variable t:

θ (X, t) = 
Bi

Bi + V0
 exp 



− V0X



 − 

Bi

π
 exp 




− 

V0

2
 




V0t

2
 + X








 ×

× ∫ 
0

∞ exp 


− yt




y + V0
2 ⁄ 4

 
(Bi + V0

 ⁄ 2) sin (X √ y ) + √ y  cos (X √ y )

y + (Bi + V0
 ⁄ 2)2  dy .

From this expression we find the asymptotics for the function θ(X, t) for t → +∞:

θ (X, t)  >
t→+∞   

Bi
Bi + V0

 exp 


− V0X



 ,

from which it follows that the maximum heating is achieved on the half-space boundary X = 0 and its evaluation for
t → +∞ is determined by the equality

  lim
t→+∞

  θ (0, t) = 
Bi

Bi + V0
 .
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Thus, the mobility of the boundary of the region simulated by the half-space results in the dependence of the
temperature field formed in it on the intensity of heat transfer on the boundary of this region. At the prescribed ve-
locity V0 of uniform motion, this influence is the greater, the lower the intensity of the heat transfer Bi on the outer
boundary.

NOTATION

x, spatial variable; t
_
, time; T, temperature; ξ, dimensionless variable; θ, dimensionless temperature; Fo, Fourier

number; Bi, Biot criterion; x∗ , chosen unit of scale; λ, thermal-conductivity coefficient; k, thermal-diffusivity coeffi-
cient; α = α(t

_
), heat-transfer coefficient; X, dimensionless variables of the moving coordinate system; l(t) and l′(t), law

and velocity of motion of the half-space boundary in the moving coordinate system; θ(X, Fo), dimensionless tempera-
ture at any point X of the half-space in the moving coordinate system; u(t) = θ(0, t), dimensionless temperature of the
half-space boundary X = 0; L2[0, +∞], linear space of functions quadratically integrable on a semibounded interval
[0, +∞); ΦC and ΦS, integral operators of the cosine and sine Fourier transforms respectively; R(t, τ), resolvent; q(µ),
characteristic polynomial; µ, eigenvalue of the square matrix B of order n; θn and In, zero and unit square matrices of
order n; su, tabulation step of the function u(t) in the iteration procedure. Subscripts: en, environment; 0, initial value;
C and S, cosine and sine transforms.
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